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Abstract—The low natural frequencies of a fully clamped, elastically isotropic circular cylindrical shell are
calculated using asymptotic techniques. Two types of expansion are considered. The first assumes a given, low
number of circumferential waves. To a first approximation, the frequencies are shown to be given by membrane
theory, and a table of these values is obtained numerically for various shell lengths, circumferential wave numbers
and a Poisson’s ratio of 0-3. The bending correction is shown to be proportional to the square root of the thick-
ness-radius ratio, to vanish with Poisson’s ratio, and to be expressible solely in terms of the solutions of the
membrane eigenvalue problem. The second type of expansion is necessary to calculate the minimum natural
frequency of a shell of given length and allows the number of circumferential waves to approach infinity as the
thickness—radius ratio approaches zero. A remarkably simple formula for the frequencies is obtained in terms
of the natural frequencies of a clamped—clamped beam. The two asymptotic results are shown to overlap.

INTRODUCTION

EXACT solutions, in terms of tabulated functions, for the natural frequencies and mode
shapes of elastic shells exist only for the simplest midsurface geometries and boundary
conditions. However, since the governing equations, suitably nondimensionalized, ex-
hibit the flexural rigidity of the shell only through a small parameter f, it seems natural
to exploit this fact and to seek approximate asymptotic solutions. In static problems,
asymptotic (or perturbation) methods have been employed for over half a century since the
work of Reissner [1], but, apparently, it is only with the recent appearance of a series
of papers by Gol’denveiser [2, 3], and Ross [4-7] that such methods have been system-
atically applied to shell vibrations.

In his studies (which have been confined to shells of revolution) Ross has pointed out
that certain of his techniques and conclusions have to be modified for cylindrical shells.
Because of the technical importance of these shells, further detailed analyses seem war-
ranted. There exists already, of course, a vast body of literature on cylinder vibrations.
However, in our opinion, the governing equations employed heretofore have been either
overly simplified (Donnell-type approximations) and thus have failed to accurately predict
certain important phenomena or unnecessarily complicated (Fliigge-type approximations),
and thus have buried essential features beneath a mound of algebra. Furthermore, many
previous studies, being based on Rayleigh-Ritz or strictly numerical methods, have failed
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to explicate the order of magnitude relations among the various dimensionless parameters
that enter the problem. It has become a truism to remark that such relations are as im-
portant to understanding the physics of a problem as specific numerical results.

In the present paper we present two different asymptotic approximations for cal-
culating the low natural frequencies of an elastically isotropic, fully clamped circular
cylindrical shell. Low frequencies are such that rapid axial variations of the mode shapes
are confined to narrow zones at the ends of the cylinder.

The analysis starts from Rayleigh’s principle. By working with Koiter’s modified
strain energy density [8, 9], we obtain the simplest possible set of differential equations
and boundary conditions in terms of displacement components. When cast into dimension-
less form, these equations contain the parameters v, I/, m, 4 and f, where v is Poisson’s
ratio, Rl is the length of the shell, R is the midsurface radius, m is the circumferential wave
number,

_ pR*&?

A
E b

(1)

p is the mass per unit volume, w is the frequency, E is Young’s modulus,

4 __ h2 (2
F= 12(1—v*)R? )

and h is the thickness, taken constant. Low natural frequencies are such that 4 < 1.

In the first type of asymptotic expansion considered, we assume that m is a given,
0(1) integer. The dimensionless natural frequencies 4,, n = 1,2,..., hereafter called the
eigenvalues, turn out, to a first approximation, to be identical to those predicted by mem-
brane theory and are given by an asymptotic formula of the form

AL v,m, B) = AL v, m)+ BAL(L, v, m)+. ... (3)

A fairly comprehensive table of the membrane eigenvalues A, is presented, Table 1, to-
gether with an explicit formula for A! in terms of the solution of the membrane eigenvalue
problem. Physically, it is meaningless to compute terms beyond A..

If the lowest eigenvalue of a shell of given length is required, then one must consider
circumferential wave numbers that grow arbitrarily large as the thickness-radius ratio
approaches zero. A second type of asymptotic expansion is then necessary to account for
bending effects which are now significant over the entire shell. However, to a first ap-
proximation, the governing equations turn out to be actually simpler than those for the
first type of asymptotic expansion and lead to an expression for 4, in terms of the eigen-
values of a clamped-clamped beam. The two different asymptotic approximations to 4,
are shown to have a common region of validity.

The power of asymptotic methods cannot be overemphasized. For example, in con-
trast to Forsberg’s elaborate, analytical/numerical computations of the lowest eigenvalue of
a clamped cylindrical shell {10], our simple equation (88) shows explicitly the dependence
of the lowest eigenvalue (as well as nearby higher ones) on m,  and .
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TaBLE |. LOW NATURAL FREQUENCIES FOR CLAMPED MEMBRANES: v = 0-3, A, = pR*w?/E

ALL EIGENVALUES WITH AN ASTERISK {*) CORRESPOND TO ANTISYMMETRIC MODES

593

circumferential wave number m = 1

1 1-5 2 3 4 5
1 0-79935 0-55703 037365 0-18307 0-10248 0-06297
2 0-94425* 0-87546* 0.78253* 0-55658* (-36084* 0-23623*
3 0-98083 0-95048 0-90707 0-78544 0-63368 0-48434
4 0:98597* 0-96841* 0:94370* 0-87312* 0-77830* 0-67091*
5 099300 098247 096719 092312 0-86156 0-71864*
6 0-99378* (-98593* 0.97482* 0-94138* (-86473* 0-78434
circumferential wave number m = 2
1 0-47198 0-26079 0-15443 0-06500 003205 0-01746
2 0-81622* 0-63822* 0.-46826* 0-24242* 0-13340% 0-07909*
3 091702 0-81753 0-69924 0-46819 0-29936 0-19350
4 0-95051* 0-89190* 0-81608* 0-63819* 0-46790* 0-33380*
5 0-96966 0-93058 0-87855 0-74715 060215 0-46780
6 0-97772* 0-95048* 0-91354* 0-81593* 0-69889* 0-57851*
circumferential wave number m = 3
1 0-28074 0-13458 007254 002636 001152 0-00570
2 0-65241* 0-41996* 0-26398* 0-11392* 0-05609* 0-03043*
3 0-82291 0-65242 0-48961 0-26141 0-14360 0-08365
4 0-89456* 0-78095* 0-65234* 0-41895* 0-25960* 0-16324*
5 093187 0-85249 075571 0-55167 0-38052 0-25856
6 095144* 0-89433* 0-82130* 0-65230* 0-48927* 0-35650*
circumferential wave number m = 4
1 0-17523 007559 003763 0-01206 000483 0-00225
2 0-49726* 0-27210* 0-15423* 0-05870* 0-02645* 0-01338*
3 0-71410 0-49715 0-30116 0-14942 007401 004002
4 0-82343* 0-65720* 0-49698* 0-26776* 0-14659* 0-08451*
5 0-88240 0-75863 062357 0-38907 0-23536 0-14487
6 0-91605* 0-82313* 0-71364* 0-49685* 0-32863* 0-21575*
circumferential wave number m = 5
1 0-11460 0-04527 002104 0-00610 000230 0-00103
2 0-37193* 0-17990* 0-09465* 0-03261* 0-01368* 0-00657*
3 060419 0-37087 022380 0-08930 004093 002090
4 0-74345* 0-53804* 0-36999* 0-17277* 0-08633* 0-04669*
5 0-82428 0-65940 0-50041 0-27064 0-14768 0-08452
6 0-87311* 0-74324* 0-60419* 0-36918* 0-21934* 0-13287*
circumferential wave number m = 6
1 007791 0-02849 001248 000335 000121 0-00053
2 0-27808* 0-12241* 0-06071* 0-01925* 0-00764* 0-00354*
3 0-50253 0-27552 0-15382 005578 002404 001175
4 03-66063* 0-43323* 0-27379* 0-11410* 0-05315* 0-02736*
5 076070 0-56304 0-39526 0-18909 009521 005155
6 0-82442* 0-66057* 0-50227* 0-27210% 0-14807* 0-08430*
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THE GOVERNING EQUATIONS

Let Rx and RO denote, respectively, axial and circumferential distance along the mid-
surface of the circular cylindrical shell. Assuming the midsurface displacement vector to
be harmonic in time, of the form RU(x, 6) ¢**!, we may characterize the eigenvalues 1, by
the well-known condition

4, = min L - f: @(U)dxde/[ L i f; U.Udxdo, 4

where the minimum is taken over all sufficiently smooth, non-zero, displacement fields
satisfying the kinematic boundary conditions and mutually orthogonal to the eigen-
vectors U,, U,,...U,_,. In (4) ERR*® is the strain energy density, a homogeneous,
positive definite quadratic functional of the extensional and bending strains. These, in
turn, depend on U and its derivatives.

In what follows we shall employ the strain measures of Sanders [11, 12] and Koiter
[13]. In terms of U, V and W, the axial, circumferential, and outward radial components
of U, these strains read

E.=U, Ey=V+W, Egz=23U+V) (5)
K.=W', Ky=W-=V, K,=W-+iU=2V, (6)

where primes and dots denote, respectively, differentiation with respect to x and 6. Further-
more, we shall take @ in the form proposed by Koiter [8, 9]:

O =0,+P,+ D, N
where
®, = M[E2+ EZ+2vE Eg+2(1 —v)EZ, 8)
Oy = BKZE+KZ+2vK Ky+2(1—v)K2, ]
D = BUESK,+ Ko)—(1 = V)E,Ko+(1 = v)E oK o+ 3E; — 31 —VEZ, (10)
and
n=r (1

As the subscripts suggest, the three terms composing ® may be referred to as the mem-
brane, bending, and coupling energy densities. The coupling energy density @, can be
shown [8] to make a negligible contribution to ®, but by its inclusion we can, with the aid
of (5) and (6), express @ in the alternate form

O = O+ D+ Dp, (12)
where
Op = AW+ W+ W)? (13)
may be referred to as the reduced part of the bending energy and

@, = (1 =V (—WW —UV+UW +VWY+(WW +UV-UW —V'W)] (14
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may be referred to as the divergence part of the bending energy. Now the surface integral
of ®, may be replaced by a line integral, which for full clamping (and certain other
boundary conditions) vanishes. Hence (4) may be replaced by the simpler expression

2xn

2n pl !
= mi . . 15
A, = min L fo [®,,(U, V, W)+ ®a(W)] dx db / fo LU Udxdé (15)

Because of periodicity and separability, we may restrict attention to displacement
fields of the form

U = u,(x)cos m(0+¢) (16)
V = v,(x) sin m(0+ ¢) (a7
W = w,(x) cos m(6 + ¢), (18)

where m is a non-negative integer and ¢ is an arbitrary phase angle. When these expressions
are substituted into (15), we obtain, upon using (5), (8) and (13), the more explicit condition

i
)‘mn = min f %{”[(u;")l + (Wm + mvm)2 + 2v(u;n)(wm + mvm) + %(1 - v)(vlm_ mum)z]
0

1
+ B w+ (1 —m?)w,)*} dx/J~ u,.u,dx, (19)

0
where the minimum is taken over all sufficiently smooth, non-zero, vector fields
U, = (U, Upys Wy) (20)
satisfying the kinematic conditions of full clamping,
Uy =V =W, =wW,=0 atx =0, (21)

and mutually orthogonal to the eigenfunctions u,, ;,u,,,,...,u

shall suppress the subscript m without risk of ambiguity.
By the calculus of variations, the solutions of (19) must satisfy the differential system

mn—1- In the following we
(B*B+yM +Alu = 0, (22)
subject to the boundary conditions (21). Here, I is the identity matrix,
D*—im*(1—v)  im(1+v)D vD
M =MD mv)]=| —tm(l+vD 1-wD*-m?> —m|, (23)
—vD —m —1
D( ) =( ), and the only non-zero element of B is

Byy(D,m) = —(D*+1—m?)?2. (24)
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ASYMPTOTIC FORMS FOR m = 0(1)

The solutions of (22) are linear combinations of the exponentials e?*, where the values
of p are roots of the bi-quartic polynomial

—2det[B*B(p, m)+nM(p, m, v)+ AI] = B*(p? + 1 —m?)*[(1 —v)p(p? —m?)* 4+ 212
+B=vnAp? —m)]+(1 = vn*(1 - )p*
+nA[(1 = vin(2m* + 34 2v)— (3~ v)A]p?
+ A[(m? + )y — 2] (24— (1 —v)ym?]. (25)

If 4 # 1, then for f sufficiently small, (25) possesses four regular (or membrane) roots
of the form*

p=Dpu+Bpu+.... (26)
where
det[M(pyy, m, v)+ 1] = 0, (27)
plus four singular (or bending) roots of the form
p=B""pstps+..., (28)
where
PY*+1—-4=0. (29)

At the “transition value”, A = 1, there are only two regular roots but six singular ones
and, as Ross notes, the distinction between membrane and bending roots becomes blurred.
In the remainder of the paper we shall confine ourselves to the low frequency case A < 1.
It is convenient to introduce the left and right boundary layer coordinates
X l—x
y=2, 2= (30)
B B

The form of (26) and (28) and the fact that the boundary conditions at x = 0 and x = / are
identical indicates that the solution of (22) has the form

u = llM(X, ’L B)+Bq[ll3(y, /L ﬂ)+u8(z’ '1’ ﬁ)]’ (31)
where
lim ug(y, 4, ) =0, (32)

and the constant ¢ is to be chosen so that the largest component of ug is 0(1). We may
assume that the largest component of u,, is 0(1) without loss of generality because any
constant times u is also a solution.

The vectors u,, and uy both satisfy the differential system (22). A simple order of mag-
nitude analysis reveals that all the components of u,, are, in general, 0(1) whereas

ug = (ug, vy, wg) =(fif, Bzg, wg), (33)

* To avoid a cluttered notation, we shall not distinguish between superscripts and powers. The proper inter-
pretation will always be clear from the context.
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where f and g are 0(1). It is convenient to work with a vector all of whose components
are 0(1) so we set
Vg = (f% & WB)- (34)

Henceforth adopting the convention that D denotes differentiation with respect to the
argument of the function on which it operates, we may characterize u,, as the regular
solution of the differential system

(WM(D, m, v)+ B*B(D, m)+ Alu,, = 0, (35)
and vy is the decaying solution of the differential system

{B%(D)+nM°(D, m, v)+ B*[B*(D, m)+nM?*(D, m,v)]+ f*B*m)+ AIlvg = 0,  (36)
where

D? 0 vD
M°® = | —tm(1+v)D L1-wD? -m (37
—vD 0 —1
—3m*(1=v) Im(1+vD 0
M? = -0 —m? 0 (38)
0 —m 0
By, = —D*  Bi, =2m*—1)D?  B%, = —(m*-1), (39)

with the remaining elements of B°, B* and B* all zero.
The exponent g in (31) may now be determined through a consideration of the boundary
conditions (21). Introducing the boundary layer coordinates (30) and noting (33), we have

up(0)+ B[S O+ f(U/B)] = O (40a)
vm(0)+ B *[g(0)+g(l/B)] = O (40b)
wi(0)+ B wy(l/B)] = O (40c)

Dw)(0)+ B ' [Dwy(0) + Dwsl(l/B)] = O (40d)

and an analogous set of conditions at x = [. Now of the eight solutions of (35), only four
are regular ; hence u,, contains four constants of integration. Likewise, of the eight solutions
of (36) only two satisfy the decay condition (32); hence vz contains two constants of
integration. As f — 0, (40) must yield a consistent set of conditions for the integration
constants. In this limit, the second term in each of the brackets may be ignored because of
the decay condition. Thus, by symmetry, we must be left at x = 0 with two conditions on
u,, and two on vg. This is possible only if ¢ = 0, in which case we have the limit boundary
conditions

U0 =0,  vp(0) =0, wy(0)+wg0) =0, Dwy0) = 0. (@1)

The first two of (41) imply that as the shell grows thinner, its low natural frequencies
approach those of a clamped membrane. This, of course, accords with physical intuition.
In fact at this preliminary stage we can say even more. Using the results of this section, we
can conclude that the membrane and reduced bending ~nergy densities ®,, and ®; are
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0(1). But the bending solutions, which dominate the contributions to ®g, decay expo-
nentially over a (dimensionless) distance of O(f). Reference to Rayleigh’s principle (19)
then shows that

in = A, +O(B). (42)

The aim of the two sections to follow is to give a concrete, quantitative form to (42).

ASYMPTOTIC EXPANSIONS FOR m = 0(1)

The qualitative results just discussed suggest we assume representations for 4, u,, and
vy of the form

A=A+pA 4. .. (43)
Uy, = ub -+ pul ... (44)
Vg = v+ Bvp+.. .. (45)

Substituting these expressions into (35), (36) and (40), with ¢ = 0, and equating to zero
coefficients of like powers of 8, we obtain the following sequence of differential equations

k
(MM + Al = —Buj *— Y Ak, k=0,1,... (46)

i=1

k
(B°+nM°+ AIwg = —(B*+qMPWh 2 —By 4~ 3 Aivk 47

i=1

and boundary conditions at x = 0, [:

witf, =0 (48a)

vy +gi-, =0 (48b)
whi+wh =0 (48c)
Dwkr '+ Dwk = 0. (48d)

In these equations, all terms with a negative index are to be set to zero. In the boundary
conditions (48), bending solutions from the opposite end are transcendentally small and
hence, asymptotically, make no contribution. (This is not true if 1 > 1.)

DETERMINATION OF A, AND A!

An algorithm* for computing all the A’ may be inferred from the work to follow. How-
ever, because of the inherent errors in classical shell theory, only A, and 4} can be con-
sidered to have physical significance, so we shall restrict attention to the determination of
these two quantities.

* Suggested by O’Maliey’s treatment of the eigenvalue problem for the stiff string [14).
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For what follows, we shall need to fix the magnitude of the eigenvectors. It proves
convenient to require

!
y uM '“M dx = 1, (49)

[

1.e. to normalize the regular part of the eigenvectors. When (44) is substituted into (49),
the resulting expression must be an identity in B. This yields the conditions

!
f u).ud dx =1 (50)

0
k i . .
Yol wulidx=0  k=12.... (51)
j=t1Jo

Furthermore, we shall make use of the “Legendre” identity

f n@. Mu—u . M) dx = n{[Du+ v(mv+w)lia+3(1 — v)(Dv—mu)o

0
— [Di+ v(md + w)Ju + 3(1 — v)(D5 — miajv}, (52)

which follows from (23) and holds for any two sufficiently smooth vector fields u and .

Calculation of A,
For k = 0, {46), {(48a) and (48b) read

[WM(D, m, v)+AlTu = 0 (53)
uy =04 =0 x=01 (54)

The form of the solution for the modes of this eigenvalue problem depends on the nature
of the roots of the polynomial

—2det[pM(p, m, v)+ AI] = (1 —v)n*(1 — A)p* + nAL(1 —vIn(2m? + 34 2v) — (3 — v)A]p?
+Al(m* + )= A [2A — (1 —viym?] = ap* + bp* +c. (55)

IfA<1,a>0 b>0 and sgnc = sgn[2A —(1 —vjym?]. Thus for m = 0, (55) has four

imaginary roots, namely
fA—A) .
e[ M) sven (56)

For m = 1 there are, likewise, four imaginary roots of the form +is,, +i8,, (s,,$,) > 0, so
long as 2(1+v)A > 1;if 2(1+v)A = 1 there are two imaginary roots and a repeated zero
root. If 2(14+v)A < l and m = 1 or if m > 2, there are two imaginary and two real roots
of the form +is,, +35,, (s,,§,) > 0.

For m = 0 there is uncoupling into the longitudinal modes

—vs, A,
4 cos(s,X), (57)

ud = A, sin(s,x), wh =
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where

p=(1=v)A = A/n, (58)

py = {14 52— JI(1—sB) + 4221, (59)

_ [1+ vs, \2 ] *

and s, = nn/l, and the torsional modes

vy = 2/ sin(s,x), (61)
where
5
A= Sy 62)

For m > 1, it is expedient, for computational purposes, to separate the natural modes
into those with v and w symmetric or antisymmetric with respect to the center of the shell.
From (23) and the preceding discussion of the roots of (55), it follows that if 2(1 +v)A > 1
and m = 1, the symmetric modes, in an obvious notation, are of the form

Ul = s[m? —vs2 4+ 2v(1 +v)A,JA, sin s, (x—/2)+(s,, A, « 3,, A4,). (63)

0 = —m[m® + 2 +v)s2 —2(1 +v)A,JA, cos s,(x —1/2)+(s,, A, < §,, A,). (64)
[1—(1=v)A, WYy = [m*+2m>s2 +vist —2(1 +v)(m? +v2sP)A,]A, cos s,(x—1/2)

+(s,, A, < 5,, 4,), (65)

while if 2(1+v)A < 1 and m = 1 or if m > 2, we have identical expressions except that §,
is everywhere replaced by i3, and A, is everywhere replaced by A,. An analogous set of
formulae with the sines and cosines reversed and ujy replaced by —u3, holds for the anti-
symmetric modes. The modes for the special case 2(1+v)A = 1, m = | may be easily
written down, but shall not be listed here.

A 2 x 2 transcendental determinantal equation for A, is obtained by substituting (63)
and (64) (or the corresponding expressions for 2(1+v)A <1 and m =1 or m > 2) into
the boundary conditions (54) and requiring A, and A, (or 4, and A4,) to be non-zero. An
analogous determinantal equation is obtained for the values of A, associated with the
antisymmetric modes. The eigenvalues A, ..., Ag have been computed for m = 1,2, 3,4,
Sand 6,1 =1,1.5,2,3,4and 5, and v = 0-3 and are listed in the table. As a rule, the eigen-
values associated with even and odd modes interlace, although the column for m = 1,
I = 5 in the table shows that there are exceptions.

Calculation of )}
To compute A!, we must consider the solutions for uj, and v3. From (46) to (48) we have

MM +ADuy, = —A'uy (66)

(B +yM°+ AlWwg = 0, (67)
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and, at x = 0, ],
uy+fo =0, vp =0 (68a,b)
wl+wd =0, Dwd=0. (69a, b)

An expression for 4! may be obtained without explicitly solving for u}, as follows:
First, take the dot product of uj, with (53), subtract the dot product of uy with (66)
and integrate from x = 0 to x = [ to obtain

1 1
J [ul . (MM + ADul —ul, . (yM + ADuy, ] dx = A J u, . ud dx. (70)
0 0
Next, apply (50), (52) and the boundary conditions (54) and (68) to reduce this relation to
Al = —n{(Duy +ywip folo
= [ Du(0)+ vwi{(0)] /o(0), (71)

where the last line is a consequence of the modes being symmetric or antisymmetric about
x = 1/2.

The only unknown in (71) is f,(0). To express this value in terms of u}, we solve (67)
subject to the decay condition (32) and the boundary conditions (69). With M° and B°
given by (37) and (39), we find that

Joy) = (v/)w3(0) e~ cos ky, (72)

where

K=\|——

1—A}*

y) ) . (73)
Substituting (72) into (71), with # and x given by (11) and (73), we obtain an expression
for A' in terms of the solution of the first approximation membrane problem alone:

0
3= W[Du&(@wﬁ@} (74)
For given values of / and m, the numerical value of 4} can be computed by obtaining a
value of A, from the table, determining the associated value of s, from (55), the ratio
A,/A, from either of the boundary conditions (54), the value of 4, from the normalization
condition (50) and finally, the values of Du$; and w$, from (63) and (65) or their counter-
parts. As expected, (74) breaks down as the transition value A = 1 is approached.

ASYMPTOTIC FORMS FOR LARGE m

Figure 5 of [10] shows, for a shell of given length /, that the smallest eigenvalue, call it
Ay, occurs at a circumferential wave number m, which grows as f§ — 0. Moreover, for
fixed B, m, is seen to decrease with increasing [. These numerical results may be further
quantified by a simple, analytical upper bound calculation which suggests

Ae =0(B/1),  m, =0(1/Bl,  pg=0(1/)), (75)
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if 1 is not too small compared to unity. Here pp denotes one of the regular roots of (25),
i.e. one of the roots that remains bounded as § — 0.

If we wish to compute 4, an asymptotic expansion differing from the one of the pre-
ceding sections must be employed. In this section we sketch the steps leading to a first-
approximation expression for 4, and the other nearby eigenvalues. For brevity, we do not
attempt to set up a formal expansion procedure. The final result is a remarkably simple
formula involving the eigenvalues of a clamped—clamped beam and having a region of
overlap with the membrane approximation.

Assuming (75) to be valid—as the consistency of the subsequent analysis shows it to
be—we find, by inspection, that (25) has four regular roots of the form

pr =17 '[Pk +0(B/D], (76)
where
PR+ BrmHm* — 1) = Im*(m*+ 1) = 0, (77)
and four singular roots of the form
ps = B~ '[ps+ 0B/, (78)
where
(PN*+1=0. (79

It is convenient again to introduce the boundary layer coordinates (30) and, in addition,
the interior coordinate

¢ = x/l (80)
The solution of (22) may be then represented in the form
u = ug(¢) +ug(y) +ugl2), (81)

where the singular solutions must approach zero with increasing argument. An order of
magnitude analysis shows that |ug|, jug] = 0(1) and that the components of these vectors
satisfy boundary conditions at x = 0, [ of the form

ug+0(B/) = 0,  vg+0(/l)* =0 (82a, b)
we+ws+0B/) =0,  Dwg+0(B/l) = 0. (82c, d)

As before, the boundary conditions show that the singular (or boundary-layer) solutions
have no effect to a first approximation.
Let

(a/D)* = Agm*(m® + 1)~ Bm*(m* — 1), (83)

Then, in view of (75) and (77), the regular solutions of (22) symmetric about the center of
the shell have the form

up = —o,[B, sin o,(¢ —3)+C, sinh 0,({ —3)] + (/1) (84)

vg = m[B, cos 2,({ —3)+ C, cosh o, (& — 5)] +0(B/1) (85)

wg = —m?*[B, cos a,({ —3)+C, cosh o, (& — )]+ 0(B/)). (86)



Calculation of the low natural frequencies of clamped cylindrical shells by asymptotic methods 603

When (84) and (85) are substituted into the boundary conditions (82a, b), the resulting
2 x 2 frequency determinant is identical to that for a clamped—clamped beam executing
symmetric vibrations.

An analogous statement holds for the antisymmetric modes. In both cases we obtain
the well-known condition [15]

n = 1,3,..., symmetric modes
cosa, cosha, =1 . i (87)
n = 2,4,...,antisymmetric modes.

The first four solutions of (87) are [15]: a; = 4-7300, &, = 7-8532, a5 = 109956, o, = 14-1372.
From (83), the desired asymptotic formula for the eigenvalues is therefore

(@,/)* | p*m*(m*—1)?
m*(m* +1) m?+1

+0(8/D). (88)

Yu [16] and Weingarten [17] have obtained a similar result, but without the error term.
Both authors start with Donnell-type equations and arrive at their approximate frequency
equations via certain ad-hoc assumptions.

The circumferential wave number m, which minimizes the right hand side of (88)
clearly has the order of magnitude relation to § and / assumed in (75). If 8l « 1, then

2p2
o 201
2 1 1

my ~—, Ay = 7

(89)

The graph of (88) for the appropriate values of m,, is virtually indistinguishable from the
one presented by Forsberg [10].

If we retain the terms in common between (55) and (77) and the associated expressions
for the components of uy, and uy and estimate the resulting errors, we are left with, simply

n 14 1 414..,10
A ——M—[L}—O(;nz—lz,ﬂ *m )] (90)

" mA(m?+1)

Thus the membrane approximation A, and (88) agree for shells of sufficient length and
thinness, although, of course, to compute the minimum natural frequency for a shell of
given length, (88) must be used.

CONCLUSIONS

To complete the picture of the frequency spectrum, it is necessary to investigate the
solutions of the governing equations (21) and (22) near and above the transition value
A = 1. The analysis near A = 1 is complicated by the fact that solving for the rapidly
varying portion of u leads to the consideration of a bi-cubic equation rather than a simple
bi-quadratic. For values of 1 somewhat above the transition value, solving for the rapidly
varying part of u again leads to the consideration of a simple bi-quadratic equation, but
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now with some purely imaginary roots, implying that rapid axial variations extend over
the entire shell. The influence of the bending stiffness on the basic membrane frequencies
does not seem so clear here as with the low natural frequencies. The matter awaits further
study.

The analysis presented herein could be extended to rectangular cylindrical panels.
However, for low frequencies, the boundary layers along the straight edges of the panels
(the cylinder generators) will be wider, of order (R3h/I?)}, as compared to the boundary
layers of order (hR)* at the ends of the panels. In addition, complicated corner layers
appear, but their effects on the low frequencies can be expected to be negligible.
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AbcTpakT—I1pUMEHSS ACHMITOTHYECKKE METO/L, BBIMHUCIISIKOTCA HH3KWE, COBCTBEHHbIE YACTOThE JUIS NOHO
3aleMACHHOM, YAPYrO M30TPONHONH, KPyrioi, UuauHapuuyeckoit obonouku. Uccneayrorcas Asa Tuna
paznoxenuit. Nepsoe npumenser GopMy 3aaHHOIO, HU3KOTO 4MC/A KOAbUEBbIX BOAH. [lnd mepsoro
APHONMIKEHUS LIONTYHAKOTCA YACTOThI Ha OCHOBE MemOpanuoit Teopuu. puBoautcs Tabauua YHCHEHHBIX
3HaueHuit A8 Pa3HbIX AMH 00OR0UKY, YHCA KOSIBUEBbIX BOJH M 3HaueHus kospduunenta [yaccona 0, 3.
Monpaska BCieacTeue uiruba ABNACTCA MPONOPUMOHANBLHON K KBALPATHYECKOMY KOPHIO OTHOLUEHMS
TONIUMHBL K PAAKHYCY, CTPEMUTCA K HYNI0 C Ko3dduumrerTom yaccoHa n abnseTca BHIPAIMMON UCKIFOUII-
TEJIbHO 4/IEHAMM pelueHnii MeMOpaHHOI 3apayu Ha cobcTBeHHble 3HAueHUS. BTOpoii THN pa3noxeHus
ABNAETCH HEOOXOAMMBIM A/ pacuyeTa MUHMUMANBLHON| COOCTBEHHOM 4acTOThl aa 0BONIOYKH 3aAaHHOR
IUTHHBE ¥ JOTYEKAET YUCITY KONBUEBbIX BOSIH CTPEMHTHCA K DECKOHEUYHOCTH, KOFAA OTHOLLEHHE TOMUMHA—
panuyc npubmkaerca k Hymo. [lonyyaercs 3aMeyaTensHo npocrtas GopMyna oas 4acToT, BHIPAKEHHBIX
yepes cOOCTBEHHBIC 4ACTOTHI MIOAHO 3aMetienHoN Banku. YKa3aHo, ¥TO ABA ACHMITTOTHYECKUE DEIYAbTATHI
4aCTHYHO COBRAAAIOT.



